#### MSA-0286

## >6V Fixed Gain, 5 dBm General Purpose Amplifier

#### Description



Lifecycle status: Active



#### Features

The MSA-02 is a general purpose cascadable 50ohm 5dBm gain block targeted for narrow and wide bandwidth IF amplifier applications. It is offered in a wide variety of plastic and ceramic packages. Bias: 7V, 25mA; f3dB = 2.8GHz; G = 12.5dB; NF = 6.5dB; P1dB = 4.5dBm; IP3i = 2dBm

# **MSA-0286**

# Cascadable Silicon Bipolar MMIC Amplifier

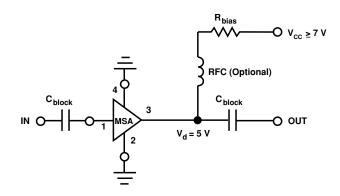


# **Data Sheet**

### **Description**

The MSA-0286 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose  $50\Omega$  gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz  $f_T$ , 25 GHz  $f_{MAX}$ , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


### **Features**

- Cascadable 50  $\Omega$  Gain Block
- · 3 dB Bandwidth: DC to 2.5 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Surface Mount Plastic Package
- Tape-and-Reel Packaging Option Available
- · Lead-free Option Available

### 86 Plastic Package



### **Typical Biasing Configuration**



## **MSA-0286 Absolute Maximum Ratings**

| Parameter                          | Absolute Maximum <sup>[1]</sup> |  |
|------------------------------------|---------------------------------|--|
| Device Current                     | 60 mA                           |  |
| Power Dissipation <sup>[2,3]</sup> | 325 mW                          |  |
| RF Input Power                     | +13 dBm                         |  |
| Junction Temperature               | 150°C                           |  |
| Storage Temperature                | −65 to 150°C                    |  |

| Thermal Resistance <sup>[2]</sup> : |  |
|-------------------------------------|--|
| $\theta_{jc}=105^{\circ}\text{C/W}$ |  |

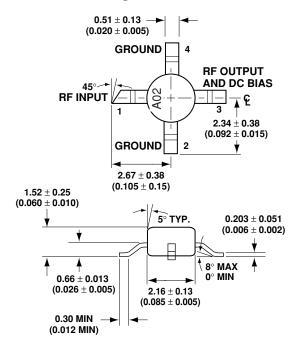
#### **Notes:**

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2.  $T_{CASE} = 25$ °C.
- 3. Derate at 9.5 mW/°C for  $T_{\rm C} > 116 ^{\circ}{\rm C}.$

# Electrical Specifications $^{[1]}$ , $T_{A}=25^{\circ}C$

| Symbol            | Parameters and Test Conditions: $I_d$ = 25 mA, $Z_o$ = 50 $\Omega$ |                       | Units | Min. | Тур.  | Max. |
|-------------------|--------------------------------------------------------------------|-----------------------|-------|------|-------|------|
| GP                | Power Gain $( S_{21} ^2)$                                          | f = 0.1  GHz          | dB    |      | 12.5  |      |
|                   |                                                                    | f = 1.0  GHz          |       | 10.0 | 12.0  |      |
| $\Delta G_{ m P}$ | Gain Flatness                                                      | f = 0.1  to  1.6  GHz | dB    |      | ±0.6  |      |
| f3 dB             | 3 dB Bandwidth                                                     |                       | GHz   |      | 2.5   |      |
| VSWR              | Input VSWR                                                         | f = 0.1 to 3.0 GHz    |       |      | 1.5:1 |      |
| VOVIL             | Output VSWR                                                        | f = 0.1  to  3.0  GHz |       |      | 1.4:1 |      |
| NF                | $50~\Omega$ Noise Figure                                           | f = 1.0  GHz          | dB    |      | 6.5   |      |
| P <sub>1 dB</sub> | Output Power at 1 dB Gain Compression                              | f = 1.0  GHz          | dBm   |      | 4.5   |      |
| IP <sub>3</sub>   | Third Order Intercept Point                                        | f = 1.0  GHz          | dBm   |      | 17.0  |      |
| $t_{\mathrm{D}}$  | Group Delay                                                        | f = 1.0  GHz          | psec  |      | 140   |      |
| Vd                | Device Voltage                                                     |                       | V     | 4.0  | 5.0   | 6.0  |
| dV/dT             | Device Voltage Temperature Coefficient                             |                       | mV/°C |      | -8.0  |      |

#### Note:


# **Ordering Information**

| Part Numbers  | No. of Devices | Comments |  |  |
|---------------|----------------|----------|--|--|
| MSA-0286-BLK  | 100            | Bulk     |  |  |
| MSA-0286-BLKG | 100            | Bulk     |  |  |
| MSA-0286-TR1  | 1000           | 7" Reel  |  |  |
| MSA-0286-TR1G | 1000           | 7" Reel  |  |  |
| MSA-0286-TR2  | 4000           | 13" Reel |  |  |
| MSA-0286-TR2G | 4000           | 13" Reel |  |  |

**Note:** Order part number with a "G" suffix if lead-free option is desired.

<sup>1</sup>. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

# **86 Plastic Package Dimensions**



**DIMENSIONS ARE IN MILLIMETERS (INCHES)** 

